Human ESTs Track Settings
 
Human ESTs Including Unspliced   (All mRNA and EST tracks)

Display mode:   

Filter: red green blue exclude include Combination Logic: and or

accession:
author:
library:
tissue:
cell:
keyword:
gene:
product:
description:
       

Color track by bases: Help on base coloring

Alignment Gap/Insertion Display Options Help on display options
Draw double horizontal lines when both genome and query have an insertion
Draw a vertical purple line for an insertion at the beginning or end of the
query, orange for insertion in the middle of the query
Draw a vertical green line where query has a polyA tail insertion
View table schema
Data last updated: 2014-03-15

Description

This track shows alignments between human expressed sequence tags (ESTs) in GenBank and the genome. ESTs are single-read sequences, typically about 500 bases in length, that usually represent fragments of transcribed genes.

NOTE: As of April, 2007, we no longer include GenBank sequences that contain the following URL as part of the record:

http://fulllength.invitrogen.com
Some of these entries are the result of alignment to pseudogenes, followed by "correction" of the EST to match the genomic sequence. It is therefore not the sequence of the actual EST and makes it appear that the EST is transcribed. Invitrogen no longer sells the clones.

Display Conventions and Configuration

This track follows the display conventions for PSL alignment tracks. In dense display mode, the items that are more darkly shaded indicate matches of better quality.

The strand information (+/-) indicates the direction of the match between the EST and the matching genomic sequence. It bears no relationship to the direction of transcription of the RNA with which it might be associated.

The description page for this track has a filter that can be used to change the display mode, alter the color, and include/exclude a subset of items within the track. This may be helpful when many items are shown in the track display, especially when only some are relevant to the current task.

To use the filter:

  1. Type a term in one or more of the text boxes to filter the EST display. For example, to apply the filter to all ESTs expressed in a specific organ, type the name of the organ in the tissue box. To view the list of valid terms for each text box, consult the table in the Table Browser that corresponds to the factor on which you wish to filter. For example, the "tissue" table contains all the types of tissues that can be entered into the tissue text box. Multiple terms may be entered at once, separated by a space. Wildcards may also be used in the filter.
  2. If filtering on more than one value, choose the desired combination logic. If "and" is selected, only ESTs that match all filter criteria will be highlighted. If "or" is selected, ESTs that match any one of the filter criteria will be highlighted.
  3. Choose the color or display characteristic that should be used to highlight or include/exclude the filtered items. If "exclude" is chosen, the browser will not display ESTs that match the filter criteria. If "include" is selected, the browser will display only those ESTs that match the filter criteria.

This track may also be configured to display base labeling, a feature that allows the user to display all bases in the aligning sequence or only those that differ from the genomic sequence. For more information about this option, click here. Several types of alignment gap may also be colored; for more information, click here.

Methods

To make an EST, RNA is isolated from cells and reverse transcribed into cDNA. Typically, the cDNA is cloned into a plasmid vector and a read is taken from the 5' and/or 3' primer. For most — but not all — ESTs, the reverse transcription is primed by an oligo-dT, which hybridizes with the poly-A tail of mature mRNA. The reverse transcriptase may or may not make it to the 5' end of the mRNA, which may or may not be degraded.

In general, the 3' ESTs mark the end of transcription reasonably well, but the 5' ESTs may end at any point within the transcript. Some of the newer cap-selected libraries cover transcription start reasonably well. Before the cap-selection techniques emerged, some projects used random rather than poly-A priming in an attempt to retrieve sequence distant from the 3' end. These projects were successful at this, but as a side effect also deposited sequences from unprocessed mRNA and perhaps even genomic sequences into the EST databases. Even outside of the random-primed projects, there is a degree of non-mRNA contamination. Because of this, a single unspliced EST should be viewed with considerable skepticism.

To generate this track, human ESTs from GenBank were aligned against the genome using blat. Note that the maximum intron length allowed by blat is 750,000 bases, which may eliminate some ESTs with very long introns that might otherwise align. When a single EST aligned in multiple places, the alignment having the highest base identity was identified. Only alignments having a base identity level within 0.5% of the best and at least 96% base identity with the genomic sequence were kept.

Credits

This track was produced at UCSC from EST sequence data submitted to the international public sequence databases by scientists worldwide.

References

Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank: update. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D23-6.

Kent WJ. BLAT - The BLAST-Like Alignment Tool. Genome Res. 2002 Apr;12(4):656-64.